Acta Crystallographica Section C

Crystal Structure

Communications
ISSN 0108-2701

Sodium 1-carboxycyclopropane-1-carboxylate cyclopropane-1,1-dicarboxylic acid monohydrate

Kenneth W. Muir,* Alistair MacDonald and Alan MacDonald

Department of Chemistry, University of Glasgow, Glasgow G12 8QQ, Scotland
Correspondence e-mail: ken@chem.gla.ac.uk

Received 8 October 2004
Accepted 25 October 2004
Online 11 November 2004
In the title type B_{2} acid salt, $\mathrm{Na}(L \mathrm{H})\left(L \mathrm{H}_{2}\right) \cdot \mathrm{H}_{2} \mathrm{O}\left[L \mathrm{H}_{2}=\right.$ $\mathrm{C}_{2} \mathrm{H}_{4} \mathrm{C}\left(\mathrm{CO}_{2} \mathrm{H}\right)_{2}$] or $\mathrm{Na}^{+} \cdot \mathrm{C}_{5} \mathrm{H}_{5} \mathrm{O}_{4}{ }^{-} \cdot \mathrm{C}_{5} \mathrm{H}_{6} \mathrm{O}_{4} \cdot \mathrm{H}_{2} \mathrm{O}$, the vertices of a distorted octahedron centred on each Na^{+}cation are defined by six O atoms, one from a water molecule, one from an internally hydrogen-bonded $L \mathrm{H}^{-}$anion and four from three neutral LH_{2} acid molecules. Chains of edge-sharing O_{6} octahedra are stabilized by hydrogen bonds, which interconnect the donor $\mathrm{H}_{2} \mathrm{O}$ and $L \mathrm{H}_{2}$ molecules and $L \mathrm{H}^{-}$anions. In particular, the $L \mathrm{H}_{2}$ molecule donates H atoms to $L \mathrm{H}^{-}$and $\mathrm{H}_{2} \mathrm{O}$ and forgoes the internal hydrogen bond which stabilizes the free acid and all of its characterized salts.

Comment

The cyclopropane-1,1-dicarboxylic acid molecule, (1), hereinafter $L \mathrm{H}_{2}$, where L is $\mathrm{C}_{2} \mathrm{H}_{4} \mathrm{C}\left(\mathrm{CO}_{2}\right)_{2}$, contains an internal $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bond (see scheme) and, in consequence, its monoanion $L \mathrm{H}^{-},(2)$, is a very weak acid (Meester et al., 1971). The $L \mathrm{H}^{-}$anions of the related acid salt $\mathrm{K}(L H) \cdot 0.5 \mathrm{H}_{2} \mathrm{O}$ are also stabilized by internal $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds (Dubourg et al., 1990). We now report that our attempt to prepare the analogous sodium salt $\mathrm{Na}(L \mathrm{H}) \cdot 0.5 \mathrm{H}_{2} \mathrm{O}$ has instead produced the title compound, $\mathrm{Na}(L \mathrm{H})\left(L \mathrm{H}_{2}\right) \cdot \mathrm{H}_{2} \mathrm{O}$, (I).

Crystals of (I) are built up from Na^{+}cations, LH^{-}anions, molecules of the neutral acid and water. The $L \mathrm{H}^{-}$anions

(a)

(b)

Figure 1
Views of (a) the $L \mathrm{H}_{2}$ molecule and (b) the $L \mathrm{H}^{-}$anion of (I). Displacement ellipsoids are drawn at the 20% probability level and H atoms are shown as small spheres of arbitrary radii.
(Fig. 1b) contain an internal $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bond with an $\mathrm{O} \cdots \mathrm{O}$ distance of 2.429 (3) \AA, which is even shorter than the corresponding bond in the free acid $(2.563 \AA)$. The internal $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds in the LH_{2} molecule (Meester et al., 1971) and in the $L H^{-}$anions of (I) and $\mathrm{K}(L \mathrm{H}) \cdot 0.5 \mathrm{H}_{2} \mathrm{O}$ (Dubourg et al., 1990) all have ordered H atoms conventionally bonded to one of the O atoms. This contrasts with $\left[\mathrm{Co}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right](L \mathrm{H})_{2}$, where the anions straddle crystallographic mirror planes so that the acidic H atom is either equidistant from the two O atoms or is disordered (Schwarz et al., 1998).

The LH_{2} molecules of (I) (Fig. 1a) have near $C_{2 v}$ symmetry but adopt a conformation, (3), which precludes internal hydrogen bonding [O21 $\cdots \mathrm{O} 41=2.834$ (3) A]. The geometries of the LH_{2} molecule and LH^{-}anion (Table 1) show typical features (see, for example, Meester et al., 1971; Dubourg et al., 1990; Muir et al., 2000; Schwarz et al., 1998). First, pairs of $\mathrm{C}-\mathrm{O}$ bond lengths differ by $>0.08 \AA$ in $\mathrm{CO}_{2} \mathrm{H}$ groups and by <0.02 (5) \AA in $\mathrm{CO}_{2}{ }^{-}$groups. Secondly, an electronic effect of the carboxyl substituents shortens the distal C2n-C3n ($n=1$ or 2) ring bonds by $0.05-0.07 \AA$ relative to the other $\mathrm{C}-\mathrm{C}$ bonds in the cyclopropane rings. Finally, each carboxyl group nearly coincides with the plane normal to $\mathrm{C} 2 n-\mathrm{C} 3 n$ passing through $\mathrm{C} 1 n$; the C 51 carboxyl group is an exception, as can be seen by comparing the $\mathrm{C} 41-\mathrm{C} 11-\mathrm{C} 51-\mathrm{O} 41$ torsion angle with the others in Table 1.

The crystal structure of (I) is built from kinked chains of identical NaO_{6} octahedra (Table 1 and Fig. 2a), which are axially elongated along the $\mathrm{O} 21 \cdots \mathrm{Na} 1 \cdots \mathrm{O} 1 W$ direction and linked via edges which pass through crystallographic inversion centres. Atom Na1 shares octahedral edges with atoms $\mathrm{Na} 1^{i}$ and $\mathrm{Na} 1^{\mathrm{iii}}$, themselves related directly by translation along the a axis which thus defines the direction of the chains [symmetry codes: (i) $1-x, 1-y, 2-z$; (iii) $-x, 1-y, 2-z$].

Atom Na 1 bonds to three different $L \mathrm{H}_{2}$ molecules, one water molecule and one $L \mathrm{H}^{-}$anion. In consequence, the $L \mathrm{H}_{2}$ molecule participates in four $\mathrm{Na}-\mathrm{O}$ bonds (Fig. 2b), with atom $\mathrm{O} 2^{\mathrm{i}}$ bonded to both atoms Na 1 and Na^{i}, and atom $\mathrm{O} 41^{\mathrm{i}}$ shared between atoms Na 1 and $\mathrm{Na}{ }^{\text {iii }}$. The $L \mathrm{H}^{-}$anion is attached to only one cation, through atom O42, which is part of the ionized carboxyl group. Similarly, the water atom O1W
bonds to only one Na^{+}cation. Each acid molecule is also the donor in two $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds (Table 2), namely a very strong bond $\left[\mathrm{O} \cdots \mathrm{O}=2.478\right.$ (3) \AA] to the $L \mathrm{H}^{-}$anion and a weaker one $[\mathrm{O} \cdots \mathrm{O}=2.642(3) \AA$] to a water molecule. Atom O22 accepts a hydrogen bond from atom O1W. The resulting arrangement surrounds atoms Na 1 and $\mathrm{Na} 1^{\text {iii }}$ by a roughly planar belt containing an $\left(L \mathrm{H}_{2}-L \mathrm{H}^{-}-\mathrm{H}_{2} \mathrm{O}\right)_{2}$ ring in which the individual molecules and anions are joined by hydrogen bonds. Not shown in Fig. 2(b) are the O1W$\mathrm{H} \cdots \mathrm{O} 12$ hydrogen bonds which link together the chains of octahedra.

The crystal architecture of (I) uses all five available $\mathrm{O}-\mathrm{H}$ groups as hydrogen-bond donors, two of these bonds being very short ($\mathrm{O} \cdots \mathrm{O}<2.50 \AA$). In each independent $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ bond, the two O atoms are unrelated by crystallographic symmetry. Compound (I) is therefore a B_{2} acid salt in the classification of Speakman (1972).

It is tempting to ascribe the different stoichiometries of the sodium and potassium acid salts of cyclopropane-1,1-dicarboxylic acid to the different ionic radii of K^{+}and Na^{+}. However, in the case of malonic acid, $L^{\prime} \mathrm{H}_{2}$, where L^{\prime} is

(a)

(b)

Figure 2
(a) Part of the infinite chain of linked NaO_{6} octahedra. (b) The hydrogenbonded $\left(L \mathrm{H}_{2}-L \mathrm{H}^{-}-\mathrm{H}_{2} \mathrm{O}\right)_{2}$ belt around atoms Na 1 and $\mathrm{Na} 1^{\text {iii. }}$. Displacement ellipsoids are drawn at the 20% probability level and H atoms are shown as small spheres of arbitrary radii. [Symmetry codes: (i) $1-x$, $1-y, 2-z$; (ii) $x-1, y, z$; (iii) $-x, 1-y, 2-z$; (iv) $1+x, y, z$.]
$\mathrm{CH}_{2}\left(\mathrm{CO}_{2}\right)_{2}$, a similar difference is the result of a solvent isotope effect: the salts $\mathrm{Na}\left(L^{\prime} \mathrm{H}\right)$ and $\mathrm{Na}\left(L^{\prime} \mathrm{H}\right)\left(L \mathrm{H}_{2}\right)$ can be produced by identical procedures, but using $\mathrm{D}_{2} \mathrm{O}$ as the solvent gives partially deuterated $\mathrm{Na}\left(L^{\prime} \mathrm{H}\right)\left(L^{\prime} \mathrm{H}_{2}\right)$, whereas $\mathrm{H}_{2} \mathrm{O}$ gives $\mathrm{Na}\left(L^{\prime} H\right)$ (Kalsbeek, 1992).

Experimental

Crystals of (I) were obtained from an aqueous solution containing sodium hydroxide and cyclopropane-1,1-dicarboxylic acid in a 1:2 molar ratio. The IR spectrum contains broad bands at 2480 and $1905 \mathrm{~cm}^{-1}$ attributable to unsymmetrical $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds.

Crystal data

$\mathrm{Na}^{+} \cdot \mathrm{C}_{5} \mathrm{H}_{5} \mathrm{O}_{4}{ }^{-} \cdot \mathrm{C}_{5} \mathrm{H}_{6} \mathrm{O}_{4} \cdot \mathrm{H}_{2} \mathrm{O}$
$M_{r}=300.19$
Triclinic, $P \overline{1}$
$a=5.2910$ (13) \AA
$b=10.118$ (3) A
$c=12.895$ (5) \AA
$\alpha=109.44$ (3) ${ }^{\circ}$
$\beta=98.64$ (2) ${ }^{\circ}$
$\gamma=99.57(2)^{\circ}$
$V=626.0(4) \AA^{3}$

Data collection

Enraf-Nonius CAD-4
diffractometer
Non-profiled ω scans
3932 measured reflections
2985 independent reflections
1654 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.047$

$$
Z=2
$$

$$
D_{x}=1.593 \mathrm{Mg} \mathrm{~m}^{-3}
$$

Mo $K \alpha$ radiation
Cell parameters from 22 reflections
$\theta=18.8-20.7^{\circ}$
$\mu=0.17 \mathrm{~mm}^{-1}$
$T=293$ (2) K
Needle, white
$0.48 \times 0.22 \times 0.16 \mathrm{~mm}$
$\theta_{\text {max }}=28.0^{\circ}$
$h=-6 \rightarrow 1$
$k=-13 \rightarrow 13$
$l=-17 \rightarrow 17$
3 standard reflections frequency: 120 min intensity decay: 1%

Table 1
Selected geometric parameters ($\left(\AA,{ }^{\circ}\right)$.

$\mathrm{Na} 1-\mathrm{O} 42$	$2.261(2)$	$\mathrm{O} 41-\mathrm{C} 51$	$1.207(3)$
$\mathrm{Na} 1-\mathrm{O} 21^{\mathrm{i}}$	$2.325(2)$	$\mathrm{C} 11-\mathrm{C} 21$	$1.513(4)$
$\mathrm{Na} 1-\mathrm{O} 1^{\mathrm{i}}$	$2.370(2)$	$\mathrm{C} 11-\mathrm{C} 31$	$1.525(4)$
$\mathrm{Na} 1-\mathrm{O} 41^{i i}$	$2.384(2)$	$\mathrm{C} 21-\mathrm{C} 31$	$1.464(5)$
$\mathrm{Na} 1-\mathrm{O} 1 W$	$2.526(3)$	$\mathrm{O} 12-\mathrm{C} 42$	$1.215(3)$
$\mathrm{Na} 1-\mathrm{O} 21$	$2.533(2)$	$\mathrm{O} 22-\mathrm{C} 42$	$1.298(4)$
$\mathrm{Na} 1-\mathrm{Na} 1^{\text {iii }}$	$3.245(2)$	$\mathrm{O} 32-\mathrm{C} 52$	$1.233(3)$
$\mathrm{Na} 1-\mathrm{Na} 1^{\mathrm{i}}$	$3.769(3)$	$\mathrm{O} 42-\mathrm{C} 52$	$1.258(3)$
$\mathrm{O} 11-\mathrm{C} 41$	$1.320(3)$	$\mathrm{C} 12-\mathrm{C} 32$	$1.518(4)$
$\mathrm{O} 21-\mathrm{C} 41$	$1.204(3)$	$\mathrm{C} 12-\mathrm{C} 22$	$1.520(4)$
$\mathrm{O} 31-\mathrm{C} 51$	$1.301(3)$	$\mathrm{C} 22-\mathrm{C} 32$	$1.451(5)$
$\mathrm{C} 51-\mathrm{C} 11-\mathrm{C} 41-\mathrm{O} 21$	$-1.4(4)$	$\mathrm{C} 52-\mathrm{C} 12-\mathrm{C} 42-\mathrm{O} 22$	$-3.1(4)$
$\mathrm{C} 41-\mathrm{C} 11-\mathrm{C} 51-\mathrm{O} 41$	$-23.0(4)$	$\mathrm{C} 42-\mathrm{C} 12-\mathrm{C} 52-\mathrm{O} 42$	$1.9(4)$

Symmetry codes: (i) $1-x, 1-y, 2-z$; (ii) $x-1, y, z$; (iii) $-x, 1-y, 2-z$.

Table 2
Hydrogen-bonding geometry $\left(\AA,{ }^{\circ}\right)$.

$D-\mathrm{H} \cdots A$	D-H	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{O} 22-\mathrm{H} 22 \cdots \mathrm{O} 42$	0.93 (6)	1.56 (6)	2.429 (3)	154 (5)
$\mathrm{O} 1 W-\mathrm{H} 2 W \cdots \mathrm{O} 12^{\text {v }}$	0.86 (4)	1.90 (4)	2.737 (3)	162 (4)
$\mathrm{O} 1 W-\mathrm{H} 1 W \cdots \mathrm{O} 22^{\mathrm{ii}}$	0.85 (4)	1.98 (4)	2.777 (4)	155 (3)
$\mathrm{O} 11-\mathrm{H} 11 \cdots \mathrm{O} 1 W^{\text {iii }}$	0.77 (5)	1.88 (5)	2.642 (3)	170 (5)
$\mathrm{O} 31-\mathrm{H} 31 \cdots \mathrm{O}_{2}{ }^{\text {iv }}$	0.72 (6)	1.80 (6)	2.478 (3)	155 (6)
Symmetry codes: $1-x,-y, 2-z .$	$-1, y, z$	$-x, 1$	z; (iv)	, $y, z ;$ (v)

Refinement

Refinement on F^{2}
$R(F)=0.051$
$w R\left(F^{2}\right)=0.150$
$S=0.99$
2985 reflections
202 parameters

H atoms treated by a mixture of independent and constrained refinement
$w=1 /\left[\sigma^{2}\left(F_{o}{ }^{2}\right)+(0.075 P)^{2}\right]$
where $P=\left(F_{o}{ }^{2}+2 F_{c}{ }^{2}\right) / 3$
$(\Delta / \sigma)_{\text {max }}<0.001$
$\Delta \rho_{\max }=0.31 \mathrm{e}_{\AA^{-3}}$
$\Delta \rho_{\min }=-0.36 \mathrm{e}^{\AA^{-3}}$
H atoms were initially located in difference maps. In the final refinement, the positions of the methylene H atoms were determined by the HFIX instruction in SHELXL97 (Sheldrick, 1997) and they were then treated as riding on their parent C atoms, with $\mathrm{C}-\mathrm{H}=$ $0.97 \AA$ and $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C})$. The positional and isotropic displacement parameters of H atoms attached to O atoms were freely refined.

Data collection: CAD-4 EXPRESS (Enraf-Nonius, 1994); cell refinement: CAD-4 EXPRESS; data reduction: XCAD4 (Harms \& Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

The authors thank the EPSRC, UK, and the University of Glasgow for support.

Supplementary data for this paper are available from the IUCr electronic archives (Reference: DN1070). Services for accessing these data are described at the back of the journal.

References

Dubourg, A., Fabregue, E., Maury, L. \& Declercq, J.-P. (1990). Acta Cryst. C46, 1394-1396.
Enraf-Nonius (1994). CAD-4 EXPRESS. Version 5.1/1.2. Enraf-Nonius, Delft, The Netherlands.
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
Harms, K. \& Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.
Kalsbeek, N. (1992). Acta Cryst. C48, 878-883.
Meester, M. A. M., Schenk, H. \& MacGillavry, C. H. (1971). Acta Cryst. B27, 630-634.
Muir, K. W., Macdonald, A., Murray, A. \& Macdonald, A. (2000). Acta Cryst. C56, 534-535.
Schwarz, T., Petri, A., Schilling, J. \& Lentz, A. (1998). Acta Cryst. C54, 11041105.

Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Speakman, J. C. (1972). Struct. Bonding, 12, 142-199.

